Chronic enzyme replacement therapy ameliorates neuropathology in alpha‐mannosidosis mice
نویسندگان
چکیده
OBJECTIVE The lysosomal storage disease alpha-mannosidosis is caused by the deficiency of the lysosomal acid hydrolase alpha-mannosidase (LAMAN) leading to lysosomal accumulation of neutral mannose-linked oligosaccharides throughout the body, including the brain. Clinical findings in alpha-mannosidosis include skeletal malformations, intellectual disabilities and hearing impairment. To date, no curative treatment is available. We previously developed a beneficial enzyme replacement therapy (ERT) regimen for alpha-mannosidase knockout mice, a valid mouse model for the human disease. However, humoral immune responses against the injected recombinant human alpha-mannosidase (rhLAMAN) precluded long-term studies and chronic treatment. METHODS Here, we describe the generation of an immune-tolerant alpha-mannosidosis mouse model that allowed chronic injection of rhLAMAN by transgenic expression of a catalytically inactive variant of human LAMAN in the knockout background. RESULTS Chronic ERT of rhLAMAN revealed pronounced effects on primary substrate storage throughout the brain, normalization of lysosomal enzyme activities and morphology as well as a decrease in microglia activation. The positive effect of long-term ERT on neuronal lysosomal function was reflected by an improvement of cognitive deficits and exploratory activity. in vivo and in vitro uptake measurements indicate rapid clearance of rhLAMAN from circulation and a broad uptake into different cell types of the nervous system. INTERPRETATION Our data contribute to the understanding of neurological disorders treatment by demonstrating that lysosomal enzymes such as rhLAMAN can penetrate into the brain and is able to ameliorate neuropathology.
منابع مشابه
Cerebellar alterations and gait defects as therapeutic outcome measures for enzyme replacement therapy in α-mannosidosis.
α-Mannosidosis is a rare lysosomal storage disease with accumulation of undegraded mannosyl-linked oligosaccharides in cells throughout the body, most notably in the CNS. This leads to a broad spectrum of neurological manifestations, including progressive intellectual impairment, disturbed motor functions, and cerebellar atrophy. To develop therapeutic outcome measures for enzyme replacement th...
متن کاملLysosomal alpha-mannosidase and alpha-mannosidosis.
Lysosomal alpha-mannosidase with acidic pH optimum is ubiquitous in human tissues where is expressed in two major forms, A and B that are the product of a single gene located on chromosome 19. Mutations in the gene encoding for alpha-mannosidase cause alpha- mannosidosis, an autosomal recessive disease, resulting in the accumulation of unprocessed mannose containing oligosaccharide material. Th...
متن کاملLong-term therapy with agalsidase alfa for Fabry disease: safety and effects on renal function in a home infusion setting.
BACKGROUND Fabry disease is an X-linked disorder of glycosphingolipid catabolism that is the result of an intracellular deficiency in the lysosomal enzyme alpha-galactosidase A (alpha-Gal A). This enzymatic defect results in the accumulation of globotriaosylceramide (Gb(3)) within cells and causes progressive neurological, cardiovascular and renal dysfunction. Our objective is to describe the s...
متن کاملTranscranial pulsed ultrasound facilitates brain uptake of laronidase in enzyme replacement therapy for Mucopolysaccharidosis type I disease
BACKGROUND Mucopolysaccharidosis type I (MPS I) is a debilitating hereditary disease characterized by alpha-L-iduronidase (IDUA) deficiency and consequent inability to degrade glycosaminoglycans. The pathological accumulation of glycosaminoglycans systemically results in severe mental retardation and multiple organ dysfunction. Enzyme replacement therapy with recombinant human alpha-L-iduronida...
متن کاملA New Mutation Causing Severe Infantile-Onset Pompe Disease Responsive to Enzyme Replacement Therapy
Pompe disease (PD), also known as “glycogen storage disease type II (OMIM # 232300)” is a rare autosomal recessive disorder characterized by progressive glycogen accumulation in cellular lysosomes. It ultimately leads to cellular damage. Infantile-onset Pompe disease (IOPD) is the most severe type of this disease and is characterized by severe hypertrophic cardiomyopathy and generalized hypoton...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2015